\( \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\reg}{reg} \)

Matthew Mastroeni




About Me

I am a Postdoctoral Fellow in the department of mathematics at Oklahoma State University working in commutative algebra. I received my Ph.D. from the University of Illinois at Urbana-Champaign in 2018, where I was advised by Hal Schenck.

Contact Information

  • Email: mmastro "at" okstate "dot" edu
  • Office: 524 Math Sciences Building


I am interested in computational and homological aspects of commutative algebra, especially the structure of free resolutions. Most recently, I have been studying the minimal free resolutions of commutative Koszul algebras.

  1. Quadratic Gorenstein rings and the Koszul property II (with H. Schenck and M. Stillman) Submitted.
    We aim to completely answer the question for which codimensions \(c\) and regularities \(r\) is every quadratic Gorenstein \(R\) with \(\codim R = c\) and \(\reg R = r\) Koszul. We prove that quadratic Gorenstein rings with \(c = r + 1\) are always Koszul, and for all \(c \geq r + 2 \geq 6\), we construct quadratic Gorenstein rings that are not Koszul.
  2. Quadratic Gorenstein rings and the Koszul property I (with H. Schenck and M. Stillman) Submitted.
    We negatively answer a question of Conca, Rossi, and Valla about whether every quadratic Gorenstein ring of regularity 3 is Koszul by using idealization to construct non-Koszul quadratic Gorenstein rings of regularity 3 for every codimension greater than or equal to 9.
  3. Koszul almost complete intersections J. Algebra 501 (2018), 285-302.
    We prove a structure theorem for the defining ideals of Koszul almost complete intersections and, in the process, give an affirmative answer for all such rings to a question of Avramov, Conca, and Iyengar about the Betti numbers of Koszul algebras.
  4. Matrix factorizations and singularity categories in codimension two Proc. Amer. Math. Soc. 146 (2018), no. 11, 4605–4617.
    We show how to functorially connect the Eisenbud-Peeva matrix factorizations of a complete intersection of codimension two to its singularity category by way of the graded matrix factorizations of Burke and Walker.


Current Semester
  • Math 2153: Calculus 2
  • Math 3613: Introduction to Abstract Algebra
Oklahoma State University
Math 2144: Calculus 1 Fall 2018
Math 3613: Introduction to Abstract Algebra Spring 2019
University of Illinois
Math 124: Finite Mathematics Spring 2018
Math 221: Calculus 1 Fall 2016, Fall 2015
Math 231: Calculus 2 Fall 2017, Spring 2016, Spring 2015, Fall 2014, Spring 2014, Spring 2013, Fall 2012
Math 241: Calculus 3 Fall 2013
Syracuse University
MAT 221: Elementary Probability and Statistics 1 Fall 2011, Spring 2011
MAT 286: Calculus for the Life Sciences Spring 2012